
GodotCon Boston 2025

Adding new Script
Languages to Godot

Jeff Ward
Senior Software Engineer, RUM SDKs
Datadog

2

What I Do In My Spare Time

3

Why?

4

● GDScript is great!
○ Syntactics sugar for NodePath access! ($node, %node)
○ @on_ready!
○ @preload!

● GDScript will always be the first to gain new features!

I like working with Dart

5

6

The more flexible we
can make Godot

the better it will be

Starting Point

7

● What I assume you know:
○ Basic understanding of GDExtension
○ How to initialize your language’s runtime
○ How to access C / FFI functions in your language

GDExtension
8

GDExtension

● GDExtension is how you’ll load your extension and initialize your language runtime
● GDExtension is how you’ll call from your Language into Godot

9

Suggested First Steps

● Initialize your your language from a GDExtension
● Call a method in your language from GDExtension
● Call a method in Godot from your language
● Generate bindings from extension_api.json

10

GDExtension Languages

11

C++ (Maintained by Godot)
https://github.com/godotengine/godot-cpp

Swift
https://github.com/migueldeicaza/SwiftGodot

Rust
https://godot-rust.github.io/

D
https://github.com/godot-dlang/godot-dlang

https://github.com/godotengine/godot-cpp
https://github.com/migueldeicaza/SwiftGodot
https://godot-rust.github.io/
https://github.com/godot-dlang/godot-dlang

Key Areas of GDExtension

12

Subtitle, 18pt Normal

Instance BindingsObject Types Calling Functions

13

Built Ins vs Engine Classes

Engine Classes

● Inherit from Object

● Pointers - passed by reference

● Some are Reference Counted (inherit from
RefCounted)

● Constructed by ClassDb

● Have separate methods in GDExtension
for calling methods, accessing properties.

Built Ins

● Contain all their own memory and are
usually copied

● Accessing properties is usually just about
reading memory.

● Have their own methods in GDExtension
for construction, destruction, referencing,
dereferencing, and calling methods

14

Built Ins vs Engine Classes

Built Ins Engine Classes

● Allocate memory

● Call the correct constructor

● Ask the ClassDb to create the instance for
you.

● Tie your language’s version to the returned
pointer via an “instance binding”

Built Ins vs Engine Classes

15

Godot Instance Bindings

● GDExtension uses “instance bindings” to bind info
from your extension to the object

● Each Godot Object has a map of extensions to
instance bindings

● You get them with
object_get_instance_binding

● If it needs to construct one, you get a callback

● If you need to connect a representation of an object
in your language to the Godot version, this is how you
do it.

16

Extension Instance Binding

Godot Object

Calling a Function on a Godot Object

Get the method binding with

● classdb_get_method_bind

Two methods:

● object_method_bind_call
○ All parameters are Variants.
○ Easier to implement
○ Slower to create variants, slower to call because of conversions.

● object_method_bind_ptrcall
○ Parameters are pointers to their arguments.
○ Faster to call, no conversions necessary.
○ Potentially unsafe if you get your parameter types wrong

17

Dart Example

18

Understanding Scripts
19

What’s a Script?

● The resource is attached to a node in the same
way a Texture would be.

● The Script is then “instanced” on to the Object
when it’s created, and methods are called on it.

20

● It’s a Resource

21

Scripts in Godot are not
bindings from an Object to a

Type in your Language

They are a binding from an
Object to a File

● Each part is one or two key classes
● These are not scripts – they’re Extension classes registered to ClassDb

22

Key Classes

23

Parts 01 Resource Loader

02 Script Extension

03 Script Instance

04 Script Language Extension

Resource Loader

● Responsible for explaining to Godot how to load your script files

● Two classes to implement
○ ResourceFormatLoader
○ ResourceFormatSaver

2401 - Resource Loader

Resource Loader

ResourceFormatLoader

● _bind_methods
● _handles_type
● _get_recognized_extensions
● _recognize_path
● _get_resource_type
● _get_resource_script_class
● _exists
● _load

25

ResourceFormatSaver

● _bind_methods
● _save
● _recognize
● _recognize_path
● _get_recognized_extensions

01 - Resource Loader

ScriptExtension

● _get_source_code
● _set_source_code

● _instance_create
● _placeholder_instance_create
● _get_language

2602 - Script Extension

Script Instance

● No base class - defined by a struct of function pointers
● Does most of your heavy lifting

2703 - Script Instance

Extension Instance Binding

Godot Object

Script Instance
Script Instance Info

Creating a Script Instance

28

Godot

Object

03 - Script Instance

Your GDExtension

ResourceLoader_load

ScriptExtension

_instance_create

script_instance_create3

Script
Instance???

Script Instance Info

● Function pointers - each one will pass
back your “Script Instance”

● Most functions revolve around
introspection - getting methods and
properties

● Some are method calls, or property getter
/ setters.

● Some revolve around memory
management

2903 - Script Instance

Introspection Functions

● Godot will ask about the methods, signals, and properties on your class
● And if they change, you need to notify Godot (notify_propery_list_changed does

this. I think…)

● If you have a statically typed language without runtime introspection, this can be difficult.
● Dart generates code for all of this, rather than rely on mirrors.

30

Function Calls to Script Instances

● has_method is given your script instance and a name
● call is given your script instance, a name, a list of arguments as Variants, and

variables for return values

● Update functions are called from the editor.
● If this object is a “placeholder”, it should error with

GDEXTENSION_CALL_ERROR_INVALID_METHOD

3103 - Script Instance

Script Language

● Quite a bit larger
● Mostly about the editor

interacting with your language

3204 - Script Language

Script Language

● Some important exceptions
○ _handles_global_class_type
○ _get_global_class_name

● Don’t offer much over ClassDb clases, provided reloading works

3304 - Script Language

34

A Quick Note About
Memory

35

● Both Instance Bindings and Script Instance Info tell you
○ When an object is destroyed
○ When a the reference count on a RefCounted changes (<=2 references)

● You are responsible for holding references properly in your language if they are RefCounted
or…
○ Your GC might collect bindings you still need
○ They may leak.

RefCounted Objects and Garbage Collectors

Dart’s Process (Copied from C#)

● Make sure the Dart runtime is always holding a
strong reference to the Godot Object IF Godot is.
○ Prevent the GC from removing the Dart

Object / Instance Binding / Script Instance
prematurely

● If Dart is the only thing holding, allow the GC to
collect and drop the last reference
○ Prevent memory leaks

36

Issues with Script Language
Extensions

37

38

Communication with Addons

● No simple way to know what methods addons offer
● No way to generate bindings against them.
● Addon code needs to be written manually

Support for GDScript Features

39

● @preload isn’t supported.
● @rpc is though.

IDE Support

40

● Source modification assumes everything goes at the end of the file
● Difficult to get that to work with language servers

○ Info functions are not async
○ Debugging functions are not async

Documentation

41

● There isn’t any
● … I’m going to be starting to work on

fixing that…
● ... and hopefully you can help!

Thank you
 github.com/fuzzybinary
 fuzzybinary@mastodon.gamedev.place
 @fuzzybinary.bsky.social

