
Journeys in Embedding Dart

Dart Beyond Flutter

Jeff Ward
Senior Software Engineer, Mobile SDKs

3

What is Embedding Dart?

● Run Dart from an executable other than dart / dart.exe
● Best example is Flutter…

Why Do Dart Embedding?

● You like Dart and want to use it in other places
● Use Dart as a scripting language in a custom executable

○ Native Code for performance and system interactions.
○ Dart for everything else

● Lean more about Dart’s inner workings.

4

My Dart Embedding

● I was working on a hobby game engine with C# scripting
● I liked Dart.
● 2015 - Eric Seidel’s Sky Talk

5

● I wanted hot reload.
● Actually started work 2 years later.

Current State

● https://github.com/fuzzybinary/dart_shared_library

6

https://github.com/fuzzybinary/dart_shared_library

Getting Started
The first step….

Building Dart

Gif of building dart

8

Building Dart (Briefly)

9

● Fetch Dart - Instructions from the Dart SDK
● Build Dart
● Modify build files
● Build libdart

This is all done through scripts on
dart_shared_library

https://github.com/dart-lang/sdk/blob/main/docs/Building.md#getting-the-source

Steps 01

10

Initializing Dart

02 Running Main

03 Running Code on Demand

04 Async Code and Frame Maintenance

05 Memory Management

01 - Initializing Dart

Initializing Dart

● Call Dart_Initialize

… but first….

12

Dart_SetVMFlags(0, nullptr);
dart::embedder::InitOnce();
dfe.Init();
dfe.set_use_dfe();
dfe.set_use_incremental_compiler(true);

01 - Initializing Dart

C++

Actually Initializing Dart

Dart_InitializeParams params = {};

params.version = DART_INITIALIZE_PARAMS_CURRENT_VERSION;

params.vm_snapshot_data = kDartVmSnapshotData;

params.vm_snapshot_instructions = kDartVmSnapshotInstructions;

params.create_group = CreateIsolateGroupAndSetup;

params.initialize_isolate = OnIsolateInitialize;

params.shutdown_isolate = OnIsolateShutdown;

params.cleanup_isolate = DeleteIsolateData;

params.cleanup_group = DeleteIsolateGroupData;

params.entropy_source = DartUtils::EntropySource;

params.get_service_assets = GetVMServiceAssetsArchiveCallback;

params.start_kernel_isolate =

 dfe.UseDartFrontend() && dfe.CanUseDartFrontend();

Dart_Initialize(¶ms);

1301 - Initializing Dart

C++

Create An Isolate

1401 - Initializing Dart

C++

Create My Isolate

● Get a platform kernel from the DFE.
● Create our Isolate from that kernel (Dart_CreateIsolateGroupFromKernel)
● Use DartUtils to initialize system libraries in our new isolate
● Use the DFE to compile and read our script.
● Load the script with Dart_LoadScriptFromKernel
● Exit the isolate and make in runnable with Dart_MakeRunnable

1501 - Initializing Dart

TL;DR

● Call DartDll_Initialize and DartDll_LoadScript from dart_shared_library

1601 - Initializing Dart

02 - Running Main

Running Main

1802 - Running Main

C++

Running Your Code

1902 - Running Main

C++ Dart

Dart Native Resolver

● The native resolver is passed a Dart
String and an int number of
arguments

● You provide a pointer to a function.

● The function takes one parameter,
Dart_NativeArguments that has
the arguments and is how you supply
the return.

2002 - Running Main

C++

Demo Time

03 - Running Code On
Demand

Running Code On Demand

● create_entity -> int
● get_drawable(int) -> Drawable*

Cute will loop through all drawables, and draw
them every frame.

2303 - Running Code On Demand

C++

Cute Initialization

2403 - Running Code On Demand

C++ Dart

Cute Running

2503 - Running Code On Demand

C++ Dart

Demo Time

04 - Async Code

Async Code For Games

2804 - Async Code

Dart

29

Async Code In Dart

● What happens if you await in a method?
● What do we call to resume that code?

04 - Async Code

C++

05 - Memory Management

Memory Management

● Native Code Holding Dart Objects
● Dart Holding Memory
● Dart Wrapping Native Objects

3105 - Memory Management

Native Holding Dart - Dart_PersistentHandle

● Dart_Handles are only valid between Dart_EnterScope / Dart_ExitScope
● Two flavors - Dart_PersistentHandle and Dart_WeakPersistentHandle
● Both created with Dart_New*PersistentHandle
● Both deleted with Dart_Delete*PersistentHandle
● Get objects using Dart_HandleFrom*Persistent

● Weak handles are allocated with “peer” objects (void*), and require a
Dart_HandleFinalizer
○ The handle finalizer is invoked “sometime after the object is garbage collected, unless

the handle has been deleted.”

3205 - Memory Management

Dart Holding Memory - FFI Pointers & Finalizers

● Dart can allocate your native structures - malloc / calloc in dart:ffi
● You need to cleanup that memory

○ Implement Finalizable
● Two types of Finalizers:

○ Finalizer
■ Get a callback when Dart finalizes the object to perform cleanup
■ Good for when Dart controls the object and allocated the memory

○ NativeFinalizer
■ Takes a C method
■ Does not give you back the Dart object
■ Good for when C controls the object and allocated the memory

3305 - Memory Management

Dart Wrapping Objects -
NativeFieldWrapperClassX
● Not documented in the Dart SDK (that I can find)
● Constructed with X pointers
● Created with Dart_AllocateWithNativeFields, which doesn’t call a constructor
● Retrieve native fields with:

○ Dart_GetNativeFieldsOfArgument
○ Dart_GetNativeReciever

● Great when C controls the whole object lifecycle, and you just want to pass around a typed
wrapper.

● Can’t be used with FFI (so far as I know)

3405 - Memory Management

Making Sure Finalizers Get Called

● The Dart Message Queue

3505 - Memory Management

Helping Dart’s GC - Dart_NotifyIdle

● Advisory info for Dart
● Tells Dart that you are unlikely to make any Dart calls in the foreseeable future, and helps it

schedule garbage collection.
● Flutter does this by…

○ at the end of every frame, informing Dart how much time is left in the frame until the
next frame (vsync)

○ If no frames are scheduled, sets an arbitrary “large” value.

“Again, this notification does not guarantee collection, just gives the Dart VM more hints about
opportune moments to perform collections.”

3605 - Memory Management

Putting it All Together

37

http://www.youtube.com/watch?v=YbS6CwV8PQU&t=74

Waiting for Godot

38

Challenges with Godot

● Godot virtual methods start with _ – Dart doesn’t like that.
○ Solution, virtual methods start with v now.

● Some features (varargs) are hard to replicate in Dart.

39

Challenges with Godot

● Relies heavily on code generation
○ Talking with Godot systems is all generated.
○ User code also requires generation.
○ Eventually will be helped by Dart macros

40

Dart

Challenges with Godot

● Godot is Multithreaded, Dart is “not”.
○ godot_dart’s solution is to move the main isolate from

thread to thread (and exit it when we don’t need it)

41

C++

Challenges with Godot

● Godot’s communication protocol is complicated, at times inherently unsafe.
○ (and requires a lot of memory allocation)

42

Dart

It is feasible

43

Demo Time
(or more like outta time….)

45

Disadvantages of Dart Embedding
(over other languages)

● Initial embedding is quite difficult
● Compile time
● Isolates vs. Threads
● The Dart team doesn’t support it

○ Though I have it on good authority this is changing

Help Do More with Dart

46

Questions?
 github.com/fuzzybinary
 fuzzybinary@mastodon.gamedev.place

Thank you
 github.com/fuzzybinary
 fuzzybinary@mastodon.gamedev.place
 @fuzzybinary.bsky.social

