
Fluttercon USA 2025

Binding Native Plugins
with Flutter and Dart

Jeff Ward
Senior Software Engineer, RUM SDKs
Datadog

2

3

Plugin Development is
all about working with

native libraries.

Interacting with the Native Platform - Why?

4

The Flutter package ecosystem is great…
… but at some point, you will at some point run into something pub doesn’t support.

Leverage new libraries.
New libraries come out all the time, and Flutter support is not their priority

Work with already cross platform C libraries.

5

How?

In the beginning…

6

All we had was Method Channels.

Using Method Channels - Dart

7Official Docs: https://docs.flutter.dev/platform-integration/platform-channels

https://docs.flutter.dev/platform-integration/platform-channels

Method Channels - Android

8Official Docs: https://docs.flutter.dev/platform-integration/platform-channels

https://docs.flutter.dev/platform-integration/platform-channels

Method Channels - iOS

9Official Docs: https://docs.flutter.dev/platform-integration/platform-channels

https://docs.flutter.dev/platform-integration/platform-channels

10

A Ridiculous Example
Sending a LOT of data over a Method Channel

Ridiculous Example

11

● Take the entire Rick and Morty Characters API
response…

● … send it over a method channel
● 410KB of JSON data

Performance

12

iOS Performance
(iPhone 12)

Min Max Average

invokeMethod 1.29ms 12.83ms 1.91ms

Full Response 10.71ms 46.51ms 12.51ms

Android Performance
(Galaxy A31)

Min Max Average

invokeMethod 5.71ms 13.84ms 7.8ms

Full Response 45.39ms 103.83ms 62.73ms

● Get a bad wrap for being “slow”.
● Highly dependent on how much data you’re serializing
● Thread “thunks” / async are your biggest performance bottleneck for responses

Method Channels

13

Benefits
Easy to abstract to a single “platform” interface

Automatically serialize / deserialize almost any
simple Dart type

Great when timing isn’t an issue

Drawbacks
Inherently asynchronous

Thread “thunks” can harm perceived
performance

Writing native binding code with assumed
contracts

Or rely on code generators like Pigeon

Flutter is looking to encourage more packages to
drop them in favor of FFI equivalents

14

The fundamental challenge
with method channels is that
they can be time consuming
to implement and maintain.

“
“

Flutter Product Manager

Mariam Hasnany

Source: https://medium.com/flutter/flutters-path-towards-seamless-interop-4bf7d4579d9a

New Native Communication

15

jnigen
(Java, Kotlin)

FFI / ffigen
(C / Obj-C)

Swift?

Swift and Kotlin FFI generation are still experimental / unstable and
part of an early access program

(https://medium.com/@mariam.hasnany/4bf7d4579d9a)

https://medium.com/@mariam.hasnany/4bf7d4579d9a

16

Practical Example
OpenCV Aruco Detector

OpenCV

17

Detect Arucos (small, AR optimized
QR codes) in a static image.

Use a static image to achieve
consistent results.

Practical Example

18

● Time something with an entirely native workload using
○ Method Channels
○ jnigen on Android
○ ffigen to a C wrapper on iOS and Android

● Time
○ invokeMethod call
○ Classification time
○ Total response time

Source Code: https://github.com/fuzzybinary/plugin_binding_demo

https://github.com/fuzzybinary/plugin_binding_demo

19

Caveats

● We’re going to do this the hard way - manually using ffigen and jnigen
● This is one of the areas that Flutter is evolving VERY quickly

○ @Native and native assets
○ New code gen / Pigeon functionality

For more info on some of this newer stuff, check out the talk that was earlier today:

-Adopting Native Assets For Cross-Platform FFI Plugins by Simon Binder

Using ffigen

● Add ffi to dependencies, ffigen to dev_dependencies
● Create ffigen.yaml
● Run ffigen (dart run ffigen --config ffigen.yaml)

20

Example ffigen.yaml

21

FFI Example Code

22

FFI Example Code

23

Using jnigen

● Add jni to dependencies, jnigen to dev_dependencies
● Create jnigen.yaml
● Build your APK (flutter build apk)
● Run jnigen (dart run jnigen --config jnigen.yaml)

24

Example jnigen.yaml

25

JNI Example Code

26

Performance - iOS

27

iOS Performance
(iPhone 12)
Method Channels

Min Max Average

invokeMethod 0.21ms 1.92ms 0.5ms

Classify Time 2.64ms 11.71ms 3.36ms

Full Response 3.03ms 15.56ms 4.53ms

Min Max Average

Classify Time 2.61ms 7.88ms 3.23ms

Full Response 2.72ms 8.54ms 3.42ms

iOS Performance
(iPhone 12)
FFI

Performance - Android

28

Android Performance
(Galaxy A31)
Method Channel

Min Max Average

invokeMethod 1.63ms 9.64ms 2.89ms

Classify Time 8.33ms 39.32ms 14.88ms

Full Response 13.41ms 59.68ms 24.44ms

Min Max Average

Classify Time 7.21ms 12.10ms 8.94ms

Full Response 8.52ms 14.07ms 10.25ms

Android Performance
(Galaxy A31)
C FFI

Min Max Average

Classify Time 8.29ms 34.70ms 14.44ms

Full Response 10.49ms 49.54ms 18.65ms

Android Performance
(Galaxy A31)
jnigen

FFI / JNI

29

Benefits
Tend to be faster (your mileage may vary)

Synchronous response

Drawbacks
Some Dart objects don’t translate well to C /
Java constructs
● For complicated objects, you need your own

protocol
● Calling overloaded methods requires $1 or

similar.

Can require some very manual translation

C linker behavior can be confusing

LLVM Magic Attributes

● If you’re statically linking C functions, the linker may strip your code, or mangle it.
● Magic LLVM / GCC attributes to prevent it:

30

But…

31

● These all work great for async send and receive….
● What about more complicated scenarios?

32

What About Callbacks?

33

What do we mean by “callback”

● Asking to be updated by the library on a regular basis
● Or at least, not in 1:1 call / response, async / await way.

Callbacks - Method Channels

34

● MethodChannel.invokeMethod
○ Don’t have to worry about isolates!
○ Do have to worry about data serialization timing
○ Inherently asynchronous

● Major Drawback
○ Must be called from the main thread
○ Will always execute on your Root isolate

Send / Receive Ports

35

● An FFI way to perform callbacks
● More complicated to set up
● Can call from any thread into a background isolates no problem
● Inherently asynchronous
● Need to be used from C

Great Talk: A Deep Dive Into Dart FFI

https://www.droidcon.com/2024/10/17/a-deep-dive-into-dart-ffi-unleashing-flutter-at-philips-research/

Callbacks - FFI Methods

36

Dart FFI allows you to create a C Function Pointer for callback purposes

● Pointer.fromFunction - Only meant for synchronous callbacks (static functions only)
● NativeCallable.isolateLocal - Can only be called from the thread that created it
● NativeCallable.listener (since Dart 3.1) - Called from any thread

○ Uses Send / Receive ports behind the scenes
○ Async and can’t return data

● NativeCallable.blocking - Called from any thread but blocks waiting on a return value
○ Doesn’t exist yet. Dart SDK issue #54554

More Info: https://dart.dev/interop/objective-c-interop#callbacks-and-multithreading-limitations

https://dart.dev/interop/objective-c-interop#callbacks-and-multithreading-limitations

Callbacks - Obj-C Delegates

37

● ffigen allows you to implement Objective-C protocols in Dart
● Add the protocol to your ffigen.yaml
● Generates 3 implementation functions:

○ .implement - Equivalent to NativeCallable.isolateLocal
○ .implementListener - Equivalent to NativeCallable.listener
○ .implementBlocking - Can be called from any thread, but blocks the calling thread

until the callback is complete.

Callbacks - JNI Methods

38

jnigen allows you to implement interfaces in Dart

● Can use .implement to implement callback classes
● Tries to be smart - uses Send ports when necessary
● .implement can’t be used in all cases - need “Proxy Objects”

More Info: https://github.com/dart-archive/jnigen/pull/326

https://github.com/dart-archive/jnigen/pull/326

jnigen Callback Proxy Object

39

40

Callback Example
Native Bluetooth in Dart

41

Objective-C ffigen.yaml

iOS FFI Callback Code

42

jni Callback Object Code

43

44

So which should I use?

So Which Should I Use?

45

Method Channels are fine and aren’t as slow as people think.

Synchronous callbacks should definitely use ffigen and jnigen.

For a C library, using FFI and ffigen will give you better responsiveness.

New Bindings should probably try fiigen and jnigen.

Questions?
 github.com/fuzzybinary
 fuzzybinary@mastodon.gamedev.place
 @fuzzybinary.bsky.social

Source Code: https://github.com/fuzzybinary/plugin_binding_demo

Thank you
 github.com/fuzzybinary
 fuzzybinary@mastodon.gamedev.place
 @fuzzybinary.bsky.social

Source Code: https://github.com/fuzzybinary/plugin_binding_demo

